This 1s a simplified picture of how a computer
wOrks.

It 1s quite like many early computers, but modern
computers have many variations on the theme.






e Accumulator
Clear Accumulator
Load Accumulator
Load Accumulator Immediate
Store Accumulator

e Arit
AC

nmetic
d to Accumulator

AC

d to Accumulator Immediate
Ditto Subtract, Multiply, Divide.



* Branching
Jump to address
Jump If Accumulator Zero
Ditto non-zero, >= zero, < zero
* Procedure Call
For our first example, we will just assume
call print
which prints the contents of the accumlator.
*Stopping



CLA
LDA
LDAI
STA
ADD
ADDI
SUB
SUBI
MUL
MULI

<memory address>
<constant>
<memory address>
<memory address>
<constant>
<memory address>
<constant>
<memory address>

<constant>



Instruction Mnemonics
(cont)

DIV  <memory address>
DIVI <constant>

JMP <memory address>
JNE <memory address>
JEQ <memory address>
JGE <memory address>
JLT <memory address>
CALL print

HLT



It turns out that this instruction set 1s enough to
write ANY possible program. (In fact, in theory
you do not even need most of them).

Let us see how a small program looks. We calculate
some Fibonacci numbers:
1,1,2,3,5,8,13, 21, 34, 55, 89, ...
Each new number 1s the sum of the previous two.



All memory addresses are 1n fact numbers (starting
with 0) and even the instructions are just
numbers, with part of the word representing the
operation — S bits would allow 32 1nstructions —
and the rest the address or constant.

But it 1s useful to use the mnemonics for
instructions, and to give names to the important
memory locations. An ASSEMBLER is a
program that will make the conversion
automatically.



Location
0

Prev:
Curt:
Next:
Limit:
Start:

Operation
JMP

LDA
ADD
STA
CALL
LDA
STA
LDA
STA
SUB
JLT
HLT

Operand
Start

40

Prev
Curt
Next
print
Curt
Prev
Next
Curt
Limit
Start



Our computer can handle arrays, for example,
because 1t could load an instruction, add 1 to the
address portion, and store 1t back again. But this
1s considered bad form.

Usually, we would add an extra register (or three)
to modify addresses. These registers typically can
be loaded, stored either from memory or the
accumulator and have add and subtract operations
only.






LDA  <memory address>, 1
STA  <memory address>, 2
MUL <memory address>, 3
ENT <value>, 1

LDI <memory address>,1
STI <memory address>, 3
INCI <constant>,2

DECI <constant>,1

TAI 1

TIA 2



The index registers add several new instructions,
and some of the existing ones need an additional
2 bits to indicate which index register to use (with
0 indicating none).

They certainly make using arrays much simpler.



0 ENI Data,1 Data
LDA 0,1
STA Best ; Best so far

Loop INCI 1,1

O N W oo N DN O1 P

LDA 0,1 ; Get next

JEQ Done

SUB Best

JLT Loop : Marks end

LDA 0,1 ; New best

STA Best

JMP  Loop Find and print the largest
Dons | by | of a list of positive

CALL print

e numbers

Best 0



Obviously it has to store a return address
(current PC + 1)
to be able to get back. There are several ways to
do it.

In the target address as a JMP 1nstruction, then
increment the PC to get the first instruction of the
procedure.

In a register. Only usetul 1f the machine has multiple
registers

In a memory stack. Most modern computers do this.



Think of a stack as a pile of magazines.

You can easily access the top one.

You could access the next few under 1t

Much harder to get to the bottom ones.

A new magazine can only be added at the top.

Only the top magazine can be removed - LIFO.

In a computer, stacks usual

'y are upside-down —

they grow downwards in memory



Most procedural languages (Algol, Pascal, C) allow
a subroutine to call itself recursively. The first
two options do not easily support this.

Suppose we designate index register 3 as a “’stack
pointer” (SP) We point it to the end of a suitable
block of memory. The CALL instruction
procedes:

Increment the PC (as usual)

Decrement the SP.

Store the PC at the address pointed to by the SP
Place the destination address in the PC



To resume at the end of the CALL, we need a
RETURN i1nstruction.

Load the PC from the memory pointed to by the SP

Increment the SP.

In addition, the stack can be used to store parameter
values. We add some useful instructions:

PUSH Equivalent to
DECI 1,SP
STA 0,SP

POP  Equivalent to
LDA O0,SP
INCI 1,SP




We might also want to be able to push and pop
index registers.

Here 1s a procedure call to calculate the next
Fibonnaci number. It 1s called by:

Note how we push two parameters to the stack, and
clean up the stack afterwards.

Location Operation Operand
LDA Prev
PUSH
LDA Curt
PUSH
CALL NextFib

INCI 2,SP



Location Operation Operand

NextFib LDA 2,.SP Prev
ADD 1,SP Curt
RETURN

Note how we can access the two parameters.

The result 1s returned 1n the accumulator (we could
store 1t 1n the stack — the caller would have to
make space — or put a pointer to where we want
the result to go in the stack).



We glossed over how this
would fit in the program
to calculate Fibonacci

numbers. It might look
like this.

Locaton Operation

0

Prev:
Curt:
Limit:
Start:

JMP

LDA
PUSH
LDA
PUSH
STA
CALL
STA
CALL
LDA
SUB
JLT
HLT

Operand
Start

3

5

40

Prev

Curt

Prev
NextFib
Curt
print
Curt
Limit
Start



A simple computer consists of control unit,
arithmentic unit, registers and memory.

Many modern computers are much more complex
- ¢.g. multiple aithmetic units, automatic memory
caches.

Most have a relatively simple instruction set.

Programmers use compilers to generate thousands
of 1nstructions from the more power ful
commands of modern programming languages.



