File Properties and Permissions

Managing File Access in Linux

Peter Perry
July 2009

What is it about?

Session Edit View Bookmarks Settings Help

newby%
newby%s 1s -1 /tmp

2 peter peter 4096 2006-06-05 21:05 kde-peter

3 peter peter 4096 2006-06-08 14:21 ksocket-peter

srwxr-xr-x 1 peter peter 0 2006-06-08 16:33 0SL_PIPE_1000 SingleOfficeIPC_c2fBb2f931e912e7245bd12123d25a1

2 peter peter 4096 2006-06-05 21:05 ssh-GvPaVDELS6
drwir-xr-x 2 peter peter 4096 2008-06-08 16:36 svllo.tmp

newby% [

|E| & Shell

e Open a shell (terminal) and type “Is -1”
* You get quite a bit of information about each file.

* Tonight, we are going to explore some of that
information

But Why Should I Care?

* The short answer is that if you are the only user of
your computer, you may not have to.

e But how do you stop your grandson from
inadvertently doing the equivalent of “rm -rf /’?

 How can you let some users access some of your
files, while stopping others?

 And anyway, what does it mean?

So, start with something simple

e Linux, like most flavours of Unix, remembers

quite a bit about each file:
— Who created it and when
— Who last modified it and when
— How large it is
— What group it belongs to (more on this later)
— What type of file it is (directory, link, data file)

Have you ever looked at your
/etc/passwd file?

games:x:5:60:games:/usr/games:/bin/sh
statd:x:108:65534::/var/lib/nfs:/bin/false
bianka:x:1001:1001:Bianka:/home/bianka:/usr/bin/zsh

work:x:28315:0:Peter:/home/work:/bin/bash

» This is a small excerpt from mine.

* [t establishes user name, user ID, default group,
home directory, and the shell you use.

e It does NOT establish your password (it used to).

And Groups?

* Groups are defined in the file “/etc/group”

 When you log in, you are in your default group

 Normally, any new file you create will be assigned
to that group and be owned by you.

File Permissions

 In early Unix, it was three octal digits.

» Each digit controlled one part of the access.
— The first digit is for the owner of the file (you) - u
— The second digit is for members of the group - g
— The third digit is for everyone else - 0

e Within a digit three bits control types of access
— 4 —read (1)
— 2 — write (w)
- 1 — execute (x)

Directory Permissions

* You must have “execute” permission to use a
directory as a directory.

* You must have write permission to create files in a
directory.

Too hard?

* These days we do it all symbolically, using the

“chmod” command
- chmod g+x — add execute permissions for the group
— chmod u-w — stop yourself accidentally deleting it (you
will be prompted whether you really want to)
— chmod a+rx — allow everyone to read and execute it.

e We will come back to what these mean

So you can set up several accounts on your
computer

Each with its own password
Each can have exclusive access to their own files
(of course, you are the superuser and can do
anything)
Each can share the files they want with other users
You can make several groups for even more
flexibility.

The commands

e chmod [-mode] [files]
sets the access permissions for files.

e chgrp [-options] group [files]
sets the group a file is in (by default your files will
usually be assigned to your default group).

chmod modes

e The mode is [who][+|-|=][category]

e Multiple modes can be given, separated by
commas.

e [who] is u (user), g (group), o(other), or a (all).

e [category] is one or more of TwxXstugo'

* + means add this permission, - means remove it,
and = means set (removing all others).

chmod modes

r — read
W — write
X — execute (or directory access)

X — execute/directory access, only if it is a
directory or already has execute access.

e s —set id bit (see later)

t — set sticky bit (forget it)

u — CO
g—Co
0 — CO

Dy t
Dy t

e user permissions
e group permissions

Dy t

e other permissions

Umask

» Setting a umask enables you to control the default

permissions on a file

e The mask specifies the permission bits that are
NOT set. - e.g. umask 022 means owner has all
permissions, group and world do not have write

permissions.

Set ID Bits

e If a directory has “set ID bits” set in its
permissions, then files created in it inherit some of
their properties from the directory.

» Setting the user bit (chmod u+s) means that files
created in the directory will inherit the owner of
the directory.

» Setting the group bit (chmod g+s) means that files
created in the directory inherit the group of the
directory.

File Sticky Bit

* There is also a “file sticky bit” but according to
“man chmod” it has no effect on most Linux
systems.

Or Go All GUI

¢ Flnd the f]le (General | Permissions [MetaInfo | Preview |
(browser) T
» Right Click S
e Select e
“Properties”™ [Advanced Permissions |
e Select

User peter

“Permissions” eroup: [parer

||r’ OK || ‘ﬁ, Cancel

Advanced Permissions

e Select advanced
permiSSionS tO play Access Permissions
With the bits diFECtly- Class PRead Write Exec Special

User X 3 [[Set UID

Group [¥ [[[Set GID
Others [X [[Sticky

All too easy, isn't it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

