
The Structure of a Compiler
A compiler comprises three main modules:
A lexical analyser or scanner: This groups characters into words (operators, variable 
names, constants, etc.), called tokens or lexemes.  (A lexical analyser can be generated 
using Lex.)
A parser: This gathers the words into phrases, such as expressions, statements, etc.  Its 
output is frequently expressed as a syntax tree.  A syntax tree shows the structure of the 
source program, e.g., its division into procedures, statements, statements within 
statements, expressions, and so on.
A code generator: This takes the syntax tree and generates machine code.

Scope of the Exercise
To keep the example short, we shall only consider the evaluation of arithmetic expressions.
We allow for the usual operators: +, -, *, /, **, (, and ).  (They operate on  operands.)
An example input is,

 1*2+3/4-5/6**-(7-8)
Applying the BEDMAS rules, the expression is equivalent to the fully bracketed form, 

((1 x 2) + (3 ÷ 4)) – (5 ÷ (6 (- (7 – 8)))
But as far as the computer is concerned, this is just a sequence of ASCII codes:

49,42,50,43,51,47,52,45,53,47,54,42,42,45,40,55,45,56,41
The scanner groups the codes into tokens, classifies them, and adds an end marker:

integer(1), times, integer(2), plus, integer(3), over,
integer(4), minus, integer(5), over, integer(6), power, minus,
open, integer(7), minus, integer(8), close, end

The parser then structures the tokens into levels, according to the BEDMAS rules:
                       |
                   subtract
                  /        \
               add          divide
             /     \        /    \
      multiply     divide  5     raise
      /      \     /    \        /   \
     1        2   3      4      6    negate
                                        |
                                     subtract
                                     /      \
                                    7        8

where the top level operator is subtract, containing add and divide at the next level, and so 
on.  This diagram is the syntax tree of the expression.  (The parser distinguishes a unary 
minus (negate) from an infix minus (subtract).)
Before we can apply an operator, we must evaluate its operands:  The first step is to multiply 
1 by 2.  The next is to divide 3 by 4.  Only then can we add 2 and 0.75.  The order of 
evaluation is therefore bottom to top, called reverse Polish notation:

1, 2, multiply, 3, 4, divide, add, 5, 6, 7, 8, subtract, negate, raise, divide, subtract.
Evaluation is most easily done using a last-in, first-out store, called a stack.  Starting with 
an empty stack, [ ], we push the first operand onto the stack, giving [1].  The next step is to 
push the second operand to the stack, giving [2,1].  Elements are added onto the top of the 
stack (which we show on the left). We then pop the top two elements from the stack, 



multiply them, and push the result back onto the stack, giving [2].  We then push 3 (giving 
[3,2]) and 4 onto the stack, giving [4,3,2].  
To apply the divide operation, we pop the top two operands, divide, and push the result 
back onto the stack, giving [0.75,2].  Notice two things: First, although the stack contained 
[4,3,2], we had to be careful to evaluate 3÷4, not 4÷3.  Second, the rest of the stack (2) 
remained undisturbed.  
You are invited to check that the remaining operations yield [2.75], [5,2.75], [6,5,2.75], 
[7,6,5,2.75], [8,7,6,5,2.75], [-1,6,5,2.75], [1,6,5,2.75], [6.0,5,2.75], [0.83333333333333337, 2.75] 
and [1.9166666666666665] successively.
From this, we see that the evaluation strategy is:  

If it is an operand, push it onto the stack.
If it is an operator, pop its operands, execute the operation, and push the result on the stack.

We can either do these operations immediately, making a desk calculator, or generate 
machine code that will do them later.

Code Generation
The code we need to generate depends on the architecture of the target machine.  Some 
computers have a stack-based architecture with machine codes that push operands, and 
operators that operate on the top two stack locations.  Others have several registers which 
can be used as a stack.  Here we assume the least convenient set up: a computer with a 
single accumulator register.  The stack is implemented using temporary variables in RAM: 
STACK1, STACK2, … STACKn, where n varies with the number of items currently in the 
stack.  STACK1 is always the bottom of the stack.  The top of the stack is always in the 
accumulator, and the next-to-top element is in the highest numbered STACKn.

OPCODE  OPERAND  COMMENTS
LDAI    7        Load the accumulator with the value 7.

   SUAI    8        - : Subtract 8 from the accumulator.
   MUAI    -1       unary - : Negate the accumulator.
   STA     STACK1   ** : Push the 2nd operand onto the stack. Evaluate 1st operand ...
   LDAI    6        Load the accumulator with the value 6.
   CALL    LN       Find the log of the 1st operand.
   MUA     STACK1   Multiply the log by the 2nd operand and pop the stack.
   CALL    EXP      Find the anti-log of the product.
   STA     STACK1   / : Push the 2nd operand onto the stack. Evaluate 1st operand ...
   LDAI    5        Load the accumulator with the value 5.
   DVA     STACK1   Divide the 1st operand by the second operand and pop the stack.
   STA     STACK1   - : Push the 2nd operand onto the stack. Evaluate 1st operand ...
   LDAI    1        Load the accumulator with the value 1.
   MUAI    2        * : Multiply the accumulator by 2.
   STA     STACK2   + : Push the 1st operand onto the stack. Evaluate 2nd operand ...
   LDAI    3        Load the accumulator with the value 3.
   DVAI    4        / : Divide the accumulator by 4.
   ADA     STACK2   + (contd): Add the 2nd operand to the 1st and pop the stack.
   SUA     STACK1   Subtract the 2nd operand from the 1st operand.
   CALL    PRINT    Display the value of the accumulator.

Note that MUAI multiplies the accumulator by the value of its operand, whereas MUA 
multiplies it by the contents of its operand.  (Similarly for SUAI, SUA, etc.)  
Notice also how the generated code for an operator can be split by the code needed to 
evaluate its operands.  The outermost subtract spans seven instructions (by pushing down 
its second operand from the accumulator to STACK1) before the SUA is executed at the last 
instruction but one!  This sort of thing makes machine code hard to understand and harder
still to write.  (In practice, reading machine code is worse than this, because compilers 
generate binary code, not assembler, and they don’t write helpful comments.) 



How Does the Scanner Work?
A scanner is typically built around a finite-state automaton (FSA).  The state of an FSA is 
usually represented by the value of a variable (typically called State).
We begin by defining a pattern for each kind of token we want to recognise.  We can do 
this using regular expressions (as used by grep).  For example, we can define a float by the 
expression [0-9]*.[0–9]+, meaning zero or more digits, followed by a period, followed by 
one or more digits.  The FSA for this token needs four states: initial, integer, point and float.  
The FSA starts in its initial state.  If a digit is read from the input, the FSA moves to the 
integer state but a period (.) moves the FSA to the point state.  In the integer state, any 
additional digits cause the FSA to remain in the integer state, but a decimal point moves it 
to the point state.  A digit moves the point state to the float state; anything else would be an 
error.  In the float state, any non-digit character marks the end of the float.  These rules 
allow floats such as ‘1.5’ and ‘.5’, but treat ‘1.’ as an error. 
For the purposes of this example, only two more states are needed: star, which means that 
one ‘*’ has been read, but we are not yet certain if it is the first of a pair, ‘**’, and final, 
which occurs at the end of the input.
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The above state transition diagram and the following state transition matrix show the
new states that follow each transition the FSA can make.  (Those marked with a question

mark should never happen, and the transitions are attempts at error recovery.)
Input\State initial integer point float star

digit (0–9) integer integer float float integer

period point point point? initial? point

+, -, /, (, or ) initial initial initial? initial initial

* star star star? star initial

end of input final final final? final final

anything else initial? initial? initial? initial? initial?

(An FSA can be derived automatically from the regular expressions for each kind of token, 
as indeed it is by grep or lex.  Explaining how would be a talk in itself.)
For example, the sequence ‘1.2*34’ would yield the following sequence of states: 

initial, integer, point, float, star, integer, integer, final.



To do anything useful, we must associate a sequence of actions with each transition.  For 
example, when a digit is read, as in the transition from integer to integer, we add a digit 
character to the growing token.  When we reach the end of an integer, as in the last 
transition, from integer to final, we convert the token’s character string to a binary integer, 
and add it to the scanner’s output stream.
(In the program I have written, these two particular transitions are defined by,

integer >== digit/[append] ==> integer.
integer >== terminator/[integer, end] ==> final.

where the append action appends the digit to the growing token, integer converts the token 
to binary form, and end creates an end marker.)
Finite-state automata are powerful, but can’t deal with the nested structures that can arise 
in most programming languages, such as the nesting of sub-expressions within brackets.

How Does the Parser Work?
There are several kinds of parser.  We shall look at a predictive parser.
A parser is controlled by a set of productions, called a grammar.  Each production specifies
one of the ways a phrase can be expanded.  The whole input is called a sentence of the
grammar.  Here are the productions for our expression language.  It uses three kinds of
terms: Items in italics are the names of phrases, such as expression.  Items in bold are the
names of tokens identified by the scanner, such as plus.  Items in parentheses, such as
‘(add)’, are actions, which we shall ignore for the moment.

sentence ==> [expression, end]
expression ==> [term, more_terms]
term ==> [factor, more_factors]
factor ==> [atom, more_atoms]
atom  ==> [plus, primitive]
atom  ==> [minus, primitive, (negate)]
atom  ==> [primitive]
primitive ==> [integer(X), (push(X))]
primitive ==> [float(X), (push(X))]
primitive ==> [open, expression, close]
more_terms ==> [plus, term, (add), more_terms]
more_terms ==> [minus, term, (subtract), more_terms]
more_terms ==> []
more_factors ==> [times, factor, (multiply), more_factors]
more_factors ==> [over, factor, (divide), more_factors]
more_factors ==> []
more_atoms ==> [power, atom, more_atoms, (raise)]
more_atoms ==> []

From the list of productions, we see that a sentence consists of an expression followed by an 
end marker.  An expression consists of a term, followed by more_terms.  Terms are sub-
expressions linked by plus or minus operators, as defined by the three productions for 
more_terms.  (The third says that more_terms can be empty; there might be no further terms.) 
In a similar way, terms consist of factors linked by times and over operators.  Factors consist
of atoms (for lack of a better name) linked by power operators, and finally atoms consist of 
a primitive (again, for lack of a better name) optionally preceded by a unary plus or minus 
operator.  A primitive is an integer, float or a parenthesised subexpression.
If we now consider the actions, such as push(X), add, etc., we can see that they describe the 
same set of stack operations we needed earlier to evaluate the expression — or to generate 



a parse tree.  
Consider the expression “1+2”.  The scanner renders this as [integer(1), plus, integer(2), 
end].  The token currently being examined by the parser is called its look-ahead, because 
although it is currently visible to the parser, it hasn’t been used yet.
A predictive parser initially expands sentence as [expression, end].  It then expands expression 
as [term, more_terms], giving [term, more_terms, end].  The next few steps are: 

[factor, more_factors, more_terms, end]
[atom, more_atoms, more_factors, more_terms, end]
[primitive, more_atoms, more_factors, more_terms, end]

Since there are three expansions for primitive, the parser must choose the right one.  Seeing 
integer(1) as the look-ahead, it chooses the third production:

[integer(1), (push(1)), more_atoms, more_factors, more_terms, end]
At this point the parser consumes integer(1) and pushes 1 onto the evaluation stack and a 
stack that builds the tree, leaving plus as the look-ahead, and the prediction becomes,

[more_atoms, more_factors, more_terms, end]
The look-ahead being plus, the next two moves have to be,

[more_factors, more_terms, end]
[more_terms, end]

The parser then chooses the first production for more_terms, giving the prediction,
[plus, term, (add), more_terms, end]

It then consumes plus, leaving integer(2) as the look-ahead.  The next few moves are,
[term, (add), more_terms, end]
[factor, more_factors, (add), more_terms, end]
[atom, more_atoms, more_factors, (add), more_terms, end]
[primitive, more_atoms, more_factors, (add), more_terms, end]

The look-ahead being integer(2), the parser chooses the third production for primitive,
[integer(2), (push(2)), more_atoms, more_factors, (add), more_terms, end]

The parser consumes integer(2) by pushing 2 onto the two stacks, leaving end as the look-
ahead, and the prediction,

[more_atoms, more_factors, (add), more_terms, end]
The next few moves are,

[more_factors, (add), more_terms, end], 
[(add), more_terms, end], 
[more_terms, end], 
[end]

which — the parser having finally added the operands and built an add(1,2) parse tree — 
neatly matches the end look-ahead.
The basic action of a predictive parser is therefore:

1. If it is a phrase, expand it in the light of the look-ahead!
2. If it is an (action), do it!
3. If it is a token that matches the look-ahead, consume it!
4. If the token doesn’t match, flag an error and attempt error-recovery.

The Code Generator
The code generator could create code to mimic the stack operations exactly as we 
described earlier, but the example program actually produces better code. We noted that 
we have to be careful when we subtract, divide or exponentiate to take the operands in the
right order.  This means that it is sometimes leads to shorter code if we evaluate their 



second operands first.  Also in the case of multiply and add, their operands commute 
(1+2=2+1), so if either operand is just a number, it pays to take it last.  This is why it is a 
good idea to build the parse tree.  It allows us to look at the bigger picture.  You may wish 
to compare the example in this text with the result from the example program. 

The Unix Tools
Unix provides several tools for compiler construction:  Lex generates a scanner given a set 
of regular expressions for the various tokens used by the language.  Yacc generates a parser
given a set of productions, which allow actions to be embedded.  
It is also possible to interface a parse tree with the code generation stage of the C compiler. 
However, this seems to be complicated, so it can be easier to generate C code and let C 
compile code suited to each particular machine.

Some Tricky Stuff
The productions conceal some subtle points:
How do we know that times and over have greater priority than plus and minus?  
Because expressions consist of terms that consist of factors that consist of atoms, etc.  Had 
factors consisted of terms, plus and minus would have had priority over times and over.
How do we know that 6-2-3 means (6-2)-3=1 (left-associative) rather than 6-(2-3) (right-
associative), but that 2**3**4 means 2**(3**4)=281, not (2**3)**4=84?  Because the grammar 
places ‘add’  before more_terms, but it places ‘raise’ after more_atoms.
Notice that the grammar is recursive: primitive is defined in terms of expression, and 
expression is (ultimately) defined in terms of primitive.
How does the parser know which production to choose?  Because a parser generator (me in 
this case) has pre-computed the possible look-aheads (called director sets).  (Again, 
explaining how would fill another talk.)  In the example program, the director sets are 
shown to the right of each production as follows,
atom ==> [plus,primitive] /[plus].
atom ==> [minus,primitive,(negate)] /[minus].
atom ==> [primitive] /[open,float(_),integer(_)].

Not all parsers are predictive:  
Prolog (with which I wrote the example program) uses an operator grammar that 
associates each operator with a priority so it knows in which order to apply them.  Such 
grammars have their limitations: for example, they can’t parse if…else… statements.  On 
the positive side, Prolog lets a programmer add new operators to the language.  (I added 
‘>==’ and ‘==>’ to my program, to make the transitions and productions more readable.)
Yacc is a bottom up (LR) parser generator.  Instead of expanding the left sides of 
productions, it waits until it has matched a right-hand side (using an FSA), then condenses 
it to a phrase.  (It still needs a look-ahead, to know when a right-hand side is complete.)  Yacc 
also uses operator priorities, to make the grammar more concise and easier to write. 
By and large, a compiler for a complete programming language is just more of the same.  
There will be coding strategies for structures such as if…else, while…do, procedure call, 
and so on.  However, there is an important omission from this example: the symbol table.  
A compiler must keep track of the names (and usually types) given to variables, functions, 
procedures, etc.  These will typically become associated with storage addresses, which are 
resolved when reference is made to them.  By looking at the symbol table, the compiler can 
convert a name into a storage address.  Most languages allow names to be overloaded, for 
example, a function can define a local integer X, but X can also be a global string outside 
the function.  A reference to X would normally concern the most local definition: the one 
with the narrowest scope.  Compilers typically store a stack of symbol tables, one for each 
procedure or function, with the most local table on top.


