IMAGE PROCESSING
with
ADSS

Peter Perry
DSTO
(Contractor)

Basic Concepts

* Image Processing Iin stages

- Each stage is (relatively) simple.
- Many stages are reusable.

» Unix/Linux can run stages in Parallel

- If each Is a separate process.
- How could they communicate?

Inter-Process Communication

Unit processes have three ‘automatic' files.

stdin — Standard Input
stdout — Standard Output
stderr — Standard Error

Unix/Linux allows us to 'pipe’ processes.
A pipe Is an area of memory
Maintained by the operating system

One process writes to it (uses it as stdout)
Second process reads from it (as stdin)

Simple Pipe Example

» Can pipe stdout of one process to stdin of next

- This is called a “filter”

- cat*.c

- cat*.c|gre
- cat*.c|gre
- cat *.c | gre

0D Image
0D Image

0 Image

- Can put together quite

like this.

grep input
grep input | sort

poowerful commands

So to ADSS

» Write a program that

—- reads commands from stdin

- Does some simple image processing
(really well and quickly)

- Writes Its results to stdout
* Link the programs together using pipes
- That 1Is ADSS

Sample ADSS processing

A synthetic aperture radar (SAR) image
Bright returns are usually man-made objects
So find the bright pixels in the image.

Define “bright” statistically
Many will just be noise
Where there are clumps, it is probably a target.

The cluster the clumps together
Then select clumps based on some criteria

Our ADSS Chain

- e | [cuser| |[psam | -

y - = s

Command and Data Language

» Text-based language describes:

- The processing steps
- The module parameters

- The image(s) to be processed

* (
(
(

The Processing Steps

DIoCeSS commanc
DIrocess commanc

DIrocess commanc

prescreen “ata”)
cluster “clusterer”)
discrim “simple-features”)

* (process create pipeline
prescreen cluster discrim)

The Configuration

* (config prescreen
(threshold-sd-over-mean 4.0)
(quard-size 20)

(outer-limit 25)
(Input-image main))

* (config cluster
(cluster-distance 5)
(Input-image main))

» (config discrim
(minimum-pixels 20))

- = = P S — — - —

The Image

* (Input-image main isr “images/test-image.isr”)
» (available main 1024)

* (Images-done)
* (exit)

Module Operation

Each module has a single input stream and single output stream

CDL Messages
(input)

Module Configuration
Image messages

CDL Messages
(output)

Modified (e.g. grouped)
Detections (from Detections

previous stage(s)) Extra imagery (e.g.

Miscellaneous segmentation)
messages (from

: Miscellaneous messages
previous stage(s))

The Output

The first stage will describe the bright pixels it
found:

(detection (main (x 125) (y 115))
(thresholded-value 4.78)
(history prescreen))

The second stage will cluster these:

(detection (main (x 100) (y 112))
(bounds (x 98 8) (y 111 4))
(rle-data (main (25) (03 2 3) (0 8) (4 2))
(thresholded-value 5.2) (detected-pixels 21)
(history cluster prescreen))

e —

The Project

Started 1997 by Dr Nick Redding

| joined in January 2002
8 modules supporting two image formats
Currently a team of 10 contractors

Around 600 modules, 60 image formats
Nearly a million lines of code

Plus several DSTO staff

Plus collaborators in UK, Canada, USA

An ADSS Module

Aim IS to have each module

Self contained
Self documenting

We achieve this through:

A module header which contains the
documentation (LaTeX format).

And the interface specification
(principally the parameters)

The module body implements the algorithm.

[*** COPYRIGHT
Copyright © Commonwealth of Australia 1993-
2010

***/

[*** AUTHOR
Peter Perry, July 2010

***/

[*** DOCUMENTATION
A module to detect bright pixels.

Bright pixels are detected by simple
thresholding....

***/

[*** SPECIFICATION
(config (threshold ?real)
(param threshold (type float) (init 2.0) store)
(description “Threshold.”)
(extended-description
“This Is the detection threshold.”))
(config (tile-size ?integer)
(param tileSize (type int) (init 1000) store)
(assert tileSize > 0)
(description “Image processing tile size.”)
(extended-description
“The image will be processed in tiles of”
“size $tileSize \times tileSize$.”)

(config default BASIC CONFIGS)

— m— IE, - pa—

— . - —-

» Specification section (cont):

(callback imagesReady)
(callback processTile)
(callback imagesDone)

(command default)
(global imageFrag (type fragment))

*k*k /

 The actual code:

#include “adss-module.hpp”
#include “absolute-threshold.inc”

tcdl_status imagesDone(void)

{

frag_free(&moduleData.imageFrag);
return CDL_OK;

}

tcdl_status imagesReady(void)

{

frag_Init(&moduleData.imageFrag,
moduleData.tileSize,
moduleData.tileSize,
DTYPE_FLOAT, false,
DSCALE_LIN AMPL);
cdl_set_mode(CDL_MODE_REGION,
NULL, NULL);
cdl_set geometry(moduleData.tileSize,
moduleData.tileSize,
0,0,1,0,0,1, true);
return CDL_OK;

}

tcdl status processTile(tcdl_image *Img,
Int X0, int yO, Int wO, int hO, /* input region */
Int X1, intyl, int wl, int hl) /* output region */

{

int x,;
float *p;

frag_reshape(&moduleData.imageData,
w0, hO);
all_read_fragment(IMAGE_HANDLE(img),
&moduleData.imageData,
NULL, x0, y0, w0, hO);
assign_frag_data(FLOAT, p,
moduleData.imageData);

———

for (y = 0; y < wO; ++y)
for (x = 0; x < hO; ++x) {
If (*p >= moduleData.threshold) {
cdl _generate detection(x0 + x, yO + v,
“thresholded-value, *p);
}

++D;

}
return CDL_OK;

Comments

As you can see, there Iis not much code.
Nearly everything is done by the libraries

Conversion from external image format.
Loading image data into memory.
Working out the next tile to process
Generating the output (detection ..) message.

| have made a few simplifications.
But this would work as printed.

Fle Edit View Go Help
§ L Jus [mmewans)
Previols Next ’ Ea_ge.w o

Repository: ADSS
Module: (prsc-) agadmm 1

Average Gray Absolute Difference Magnitude Map

Description

Average Gray Absolute Difference Magnitude Map

This module is capable of performing two forms of prescreening on the incoming image: Average Gray
Absolute Difference Magnitude Map {AGADMM) and Average Gray Signed Difference Magnitude Map
{AGSDMM). The prescreening method defaults to AGADNM, but can be explicitly selected via a CDL
configuration message.

Its capability to detect differences in either direction make it snitable for use with electro-optic (EQ}) and
infra-red (IR) imagery.

The module is implemented as a region processor.

The AGADMM algorithm has the following characteristics. In addition to the normal sliding window
moved across the image, it has an inner window that varies in size at each onter window location; the
inner window size is chosen to maximise the dissimilarity of the inner window, containing the farpet,
from the outer window which contains the backpronnd.

Formally, this is expressed in the following way. Let the pixels of the inner window centred at (4, j) he
denoted by 9@ and the pixels of the outer window, excluding those of the inner, be €y {also centred
at (¢, 7)). Then the value of the AGADMM at the pixel on which the two windows are centred is given
by the maximum absolute difference of the mean of © and ® over all the possible inner window sizes
centered in the outer window. If x5 is the mapnitude of the (i, j)-th pixel in the image, then the output
d;; can be expressed as

1 1
dij = max |—r z Tg — — Z Ty (1)
Sis |10 €8 1y 2 B
where | - | denotés the cardinality of a set when appropriate. Essentially, the filter seeks to maximise
the possible difference between the mean of the backpround pixels and that of a cluster of (hopefully
brighter) target pixels.

AGADNMM has three parmmeters fo set at run time: the size of the outer window, and the maximum and
minimum sizes of the inner window. Each of these parameters can be adjusted using the configuration
parameters discussed in a following subsection. AGADMM has been implemented using column and row
“eaching” to capitalise on the minimal changes that ocenr between each placement of the inner and outer
windows, making it a relatively fast and efficient algoritlum.

The AGADNMM alporithm was originally developed for optical imagery where the presence of a target can
be indicated by both positive and negative differences between targets and their background. In contrast,
in SAR imagery targets of interest are always indicated by a positive difference. Consequently, a variation
of AGADMM was developed that replaces the absolute value operation of the previous equation (1) to
give

1 1
el o e Sl . , 2
iy uel?rx ramp | - = E i !nijlz E Pt (2)

Ele Edit View Go Hel

®

Previous

¥

Next

e [remenans]

Repository: ADSS
Module: (prsc-) agadmm 2

where ramp(-) denotes the function

@, o=

el = { 0, ifx<0.

The AGADMM alporithm has been implemented with two possible detectors at its output: a global
threshold on the filtered image, or a Neyman-Pearson detector. The principle behind the Neyman-
Pearson detector is to choose the most likely hypothesis for a decision using the probability distributions
for each class. In other words, the ontput y of the detector is assipned to either the target elass T or
clutter class € by the decision rule

yeT Ly >+ 3
{yEC‘ WLy <7 @)

where 7 is a weighting defined to be one here, and L(y) is the likelihood ratio given by

_ pilw)
Ly) = poly)’

and p{y) and p.(y) are the probability density functions of the target and clutter processes. Note that
this is an optimal decision rule piven py(y) and p.(y). Training for the detector is provided by the
train-npd module.

Complex image data is handled by conversion to amplitude.

Parameters (Alphabetical Listing)

(algorithm simbol)

Choose absolute ov signed difference for detection.

The symbol must be one of:
absolute-difference Absolute difference
signed-difference Signed difference (deteet bright targets)

(detection-action symbol)

Handling of incoming detection in detection processing mode.

The default is : "pass"

The symbol must be one of:
pass Pass the incoming detection
block Block the incoming detection
pass-if Pass the incoming detection if this module tried o generate detections
block-if Block the incoming detection if this module tried to generate detections
pass-new Pass only detections this module generates.
pasa-both Pass both the original detection an detections this module generates.

(inner-diameter-max tnfeger)

Filter maximum inner diameter.
The values are tested against : ((innerMax > 1))

Application Areas

Satellite and Wide Area Survelllance
Detecting ships.
Video Processing

Detecting moving features.
|dentifying vehicles (ellipse detection).

Hyperspectral Image Processing

128 spectral bands (cf 3 in a colour image)
Image Fusion

Merging data from 2 or 3 different sensors

— R ——

Application Areas (cont)

* Image Registration

- Merging data from two or more surveys over
the same region.

» Face and Gait Recognition
- ldentifying people in survelillance video.
» Warning of Abandoned Baggage

s —a walid—a

MJ— cluster wotsr - walicl=t

area—in

ared—out [le—aout

[le—total wa il —t

Support (Segmentation)

ontrast; 4.851

= K | B Q O § @IA_E{I Main lmage: frages@H] 30_PassT st
aArea—in | walid-—a
acadmim Ared—out lc—out
- MUx—C llc—total wa lich—t

segrment

4]

woter I— ML —C llc—total wa lich—t

[Contrast

segrment

Discrimination

m G e — | & l 'E"l El Q ﬁi @R—-—l |1 Main Irrage

aArea—in

agadrnm et T

- FAlx = llz=totzl wa il —t |

segrment

Geographic Data Fusion within ADSS

x @ ’.3_ ™ % Haagqoaa @_1—2 |__:-|'|Pu‘::s;|.i.'.ﬁge L Aragesigibrala it ﬂ

‘ lizad '— yeu 1— ala “| addlue]— Ll J

[
Pos: 000000, 000000] Cfset: 1| Contmst 1.012]

Image of the
Straight of
Gibraltar

Detections indicated

= by red and yellow

boxes

Clicking on detections
brings up dialog boxes
showing geo-
referencing data from
the World Vector
Shoreline Database

Can distinguish
between targets in
different territorial
waters

Terrestrial targets can
be processed
differently to maritime
targets

Red : Maritime Targets

: Terrestrial34
Targets

Super Resolution — SAR Spot Sequence

Can obtain enhanced
resolution of a target
from a temporal
sequence of images

Information from multiple
frames Is used to build a
single still image

Can improve effective
resolution of a sensor

35

Image Mosaic — MPEG Sequence

3000 Frame Sequence
Early result not using KLV metadata

Example fly over of Parafield airfield control tower

1iMc - LI OW
riimtren et e s

k_,j :I_,: ,fv 3 | :3@ _7 | @3 [']main: wheels. jpg LJ] Lﬂl;- ||°| i] layer w0 T Ll |® "
| Oy | [0 0 (| | 1255 255 [Push | [] Monochrome |

Kl = | i

Pos: 000279, 000205 | Lat. Long: 0:00:00.00N 0:00:00.00E | val 64 Dets/pix: 22/156,510 [

e T =

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Geographic Data Fusion within ADSS
	Super Resolution – SAR Spot Sequence
	Slide 36
	Example fly over of Parafield airfield control tower
	Slide 38
	Slide 39
	Slide 40
	Slide 41

