

The C Language

Rick Matthews

History

Von Neumann architecture implemented in Mainframe & Minicomputer
hardware

Pure Binary > Simple Assemblers > Macro-assemblers > sub-routines &
functions > high-level languages

Languages included PL/1, COBOL, ALGOL, FORTRAN, BASIC, etc.

1969-73 Ken Thompson & Dennis Ritchie at Bell Labs develop Unix & C
Language for PDP7 & PDP11

1978 Brian Kernighan & Dennis Ritchie write "The C Programming Language"
handbook (K&R) - now ANSI.

1993-96 Linus Torvalds develops kernel and console similar to Unix that runs
on a PC that he calls "Linux" using C and assembler.

C

 world's 1st (or 2nd?) most popular computer language & has led to
languages such as C++, Java, C#, etc.

 a procedural (imperative) language

 compiled language – you iteratively edit, compile, clear any compiler
errors, run, clear any run-time errors, distribute.

 one-pass compiler so must define all "names" prior to their use

 produces very fast, efficient code

 nearly all computer languages, including C, and many applications are
written in C.

 “make” files for bigger programs or projects

 IDE, Integrated Development Environment, to make development easier,
faster.

C Language Features
 allows the inclusion of assembler instructions

 can access hardware and memory directly.

 C introduced pointers, arrays, structures, strong typing

 can link to other languages

 all code is a function or part of a function (ie. no sub-routines), & therefore
can't return more than 1 value.

 functions' parameters are always passed by value

 uses standard or user-written includes, libraries (encourages code re-use)

 programs start by passing control to a main() function

 flow control: if, else, while, do while, for(; ;), switch

 types: int, char, long, float, double, pointer, unsigned, void, complex

 strings are character arrays

 zero numbering used

Format

 free form coding
 statements end in ";" (C ignores end-of-lines)
 curly brackets - position are matter of choice
 indenting is for readability only

Symbols
 arithmetic (+, -, *, /, %)

 equality testing (==, !=)

 relations (<, <=, >, >=)

 boolean logic (!, &&, ||)

 bitwise logic (~, &, |, ^)

 bitwise shifts (<<, >>)

 assignment (=, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=)

 increment and decrement (++, --)

 reference and dereference (&, *, [])

 conditional evaluation (? :)

 member selection (. , ->)

 cast or type conversion (())

 object size (sizeof)

 sequencing (,)

Some C Features

 naming - be careful of keywords!

 prototypes

 struct, union, enum

 some standard headers - stdio.h, string.h, stdlib.h, math.h

 maths library - needs linking during compilation

 passing parameters from command line - argc, *argv[]

Some common standard library functions

 printf()

 scanf()

 fopen()

 fprintf()

 fclose()

 return

 error handling - detection, correction

 goto

Example

#include <stdio.h>

int main(void)
{
 printf("hello, world\n");
 return 0;
}

